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Abstract. In this paper it build a recurrent cubic discrete neural network from the fixed points attractors of

cubic polynomials, and we use it in the restoration of grayscale images. The goal is to provide a criterion for
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neural network.
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1 Introduction

The restoration and reconstruction of images is an important area within image processing; that
in recent years has a variety of applications in different areas.

Currently, there are different methods to perform the processes of restoration and recon-
struction of images; those based on neural networks are among them. Since 1943, when the first
mathematical model was developed (McCulloch & Pitts, 1943), until the present date, there are
different types of artificial neural networks. An artificial neural network is a mathematical model
which serves for the study of nervous systems of living beings. This artificial neural network has
an important property that is the ability to acquire and store information.

In the 80s (Hopfield, 1982), it presents a new model of a recurrent discrete neural network,
which was an associative memory, and would serve to study different processes: physical, learn-
ing, memory, etc., from another point of view , in contrast to the theories that explained the
processes of learning and memory (Hebb, 1949). Interest in the scientific community continues
until this day; since it allowed to create a new area within neural networks.

Hopfield neural networks were used for image restoration and reconstruction (Zhou et al.,
1988), who were the first to use a Hopfield network for restoration; and showed the instability
of Hopfield’s neuronal network in this process. This situation motivated them to propose an
algorithm that allowed to correct this behavior of the network, guaranteeing the stability of the
neural network.

A new neural network called Modified Hopfield Neural Network (Paik, 1992) was proposed
to restore grayscale images. Other models based on Hopfield neural networks, both discrete and
continuous, were used for the restoration and reconstruction of images (Sun et al., 1992; Liu,
1993; Sun et al., 1995; Joudar et al., 2015).

In this paper, it build a new discrete neural network from the fixed points given a priori
of cubic polynomial functions (Rubio et al, 2015 - 2017). The goal is to give a rule for the
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assignment of values to the synaptic weights of the neural network in order to guarantee the
stability of the neural network. This neural network is used for the restoration of grayscale
images.

This paper use discrete polynomial neural networks (Rubio & Hernándes, 2017a), to con-
struct a discrete neural network based on cubic polynomials (Rubio & Hernándes, 2015), and
vector functions (Rubio & Hernándes, 2017b).

2 Cubic Polynomial

The result (Rubio & Hernándes, 2015), in which the points x0, x1, x2 ∈ R, x0 < x1 < x2, are
given as fixed points a priori, and a cubic polynomial is determined by

f(x) = Ax3 +Bx2 + Cx+D (1)

with

f(xi) = xi

for all i = 0, 1, 2, where

A =
− (ym − xm)

(x0 − xm) (x1 − xm) (x2 − xm)
(2)

B =
− (xm − ym) (x0 + x1 + x2)

(x0 − xm) (xm − x1) (xm − x2)
(3)

C = −−x0x1 x2 + x0x1ym + x0x2ym − x0x
2
m + x1x2ym − x1x

2
m − x2x

2
m + x3m

(x0 − xm) (xm − x1) (xm − x2)
(4)

D =
−x0x1x2 (xm − ym)

(x0 − xm) (xm − x1) (xm − x2)
. (5)

The point (xm, ym) is given, such that (x0, x0) , (x1, x1) , (x2, x2) y (xm, ym) are not
collinear.

Figure 1: Cubic polynomial with fixed points

Theorem 1. Let ε ∈ R , 0 < ε < 1/2 . Then,

−2ε+
√
2ε2 + 1 < 1− ε. (6)
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Proof. As 0 < ε < 1
2 , then: 0 < ε2 < 1

4 ,

0 < 2ε2 <
1

2
,

1 < 2ε2 + 1 <
3

2
,

1 <
√
2ε2 + 1 <

√
3

2
. (7)

Furthermore, by (7), we obtain:

−2ε+
√
2ε2 + 1− 1 + ε =

√
2ε2 + 1− 1− ε < 0.

Therefore:
−2ε+

√
2ε2 + 1 < 1− ε.

Theorem 2. Let ε ∈ R , ε > 0, then,

−2ε−
√

2ε2 + 1 < −1. (8)

Proof. As

−2ε−
√

2ε2 + 1 + 1 = −
(
2ε+

√
2ε2 + 1

)
+ 1. (9)

and ε > 0 : 1 < 1 + 2ε2 ,

1 <
√
2ε2 + 1 <

√
2ε2 + 1 + 2ε. (10)

By (10) in (9):

−2ε−
√

2ε2 + 1 < −1.

Theorem 3. Let x0 = −1, x2 = 1, xm = x1 + ε, ym = x1, ε ∈ R, 0 < ε < 1
2 and

f (x) = Ax3 +Bx2 + Cx+D given by (1). Then,∣∣f ′ (x1)
∣∣ < 1 ⇐⇒ x1 ∈

⟨
−1 ; −2ε+

√
2ε2 + 1

⟩
. (11)

Proof. As x0 = −1 , x2 = 1 , xm = x1 + ε , ym = x , using (2) - (5):

A =
−1

(1 + x1 + ε)(x1 + ε− 1)
(12)

B =
x1

(1 + x1 + ε)(x1 + ε− 1)
(13)

C =
x21 + 2εx1 + ε2

(1 + x1 + ε)(x1 + ε− 1)
(14)

D =
−x1

(1 + x1 + ε)(x1 + ε− 1)
. (15)

Moreover,
f ′ (x1) = 3Ax21 + 2Bx1 + C. (16)

Using (12) - (15) in (16), it is obtained:

f ′ (x1) =
2εx1 + ε2

(1 + x1 + ε)(x1 + ε− 1)
(17)

Therefore: |f ′ (x1)| =
|2εx1 + ε2|

(1 + x1 + ε)(1− x1 − ε)
, for −1< x1 < 1 , x1 + ε < 1.
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1. If |f ′(x1)| < 1, then ∣∣2εx1 + ε2
∣∣ < 1− x21 − 2εx1 − ε2, (18)

where 1− x21 − 2εx1 − ε2 > 0 , with solution set:

U = ⟨−1− ε; 1− ε⟩ . (19)

Solving the inequality (18) with respect to (19):

(a) −1 + x21 + 2εx1 + ε2 < 2εx1 + ε2 . Thus,

x1 ∈ ⟨−1; 1⟩ . (20)

(b) 2εx1 + ε2 < 1− x21 − 2εx1 − ε2,

x21 + 4εx1 + 2ε2 − 1 < 0.

Thus,

x1 ∈
⟨
−2ε−

√
2ε2 + 1 ; −2ε+

√
2ε2 + 1

⟩
. (21)

Using (6), (8), (19), (20), (21), it is obtained the following:

x1 ∈
⟨
−1 ; −2ε+

√
2ε2 + 1

⟩
.

2. Conversely, if x1 ∈
⟨
−1 ; −2ε+

√
2ε2 + 1

⟩
, and as 0 < ε <1

2 , then:⟨
−1; −2ε+

√
2ε2 + 1

⟩
=
⟨
−2ε−

√
2ε2 + 1 ; −2ε+

√
2ε2 + 1

⟩
∩⟨−1; 1⟩∩⟨−1− ε, ; 1− ε⟩

where:

(a)
⟨
−2ε−

√
2ε2 + 1 ; −2ε+

√
2ε2 + 1

⟩
is the solution of the inequality:

2εx1 + ε2 < 1− x21 − 2εx1 − ε2.

(b) ⟨−1; 1⟩ is the solution of the inequality:

−1 + x21 + 2εx1 + ε2 < 2εx1 + ε2.

(c) ⟨−1− ε; 1− ε⟩ is the solution of the inequality:

1− x21 − 2εx1 − ε2 > 0.

Such that: ∣∣2εx1 + ε2
∣∣ < 1− x21 − 2εx1 − ε2

|2εx1 + ε2| < (1 + x1 + ε)(1− x1 − ε)

Therefore, |f ′(x1)| < 1.

Theorem 4. Let ε ∈ R, 0 < ε < 1
2 , and x0 = −1, x1, x2 = 1 fixed points of f (x) =

Ax3 +Bx2 + Cx+D. If x1 ∈
⟨
−1; −2ε+

√
2ε2 + 1

⟩
, then x1 is a fixed point attractor of f .

Proof. Using the theorem (3), with x1 ∈
⟨
−1; −2ε+

√
2ε2 + 1

⟩
, then |f ′(x1)| < 1. Therefore,

x1 is a fixed point attractor.
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3 Building a Neural Network

The construction of a discrete neural network using cubic polynomials, it is given by (1). The
discrete neural network is given by the mapping:

F : Rn −→ Rn

x 7−→ F (x) = (F1 (x) , F2 (x) , . . . , Fn(x))
(22)

where

Fi (x) = Ai

 n∑
j=1

wijxj

3

+Bi

 n∑
j=1

wijxj

2

+ Ci

 n∑
j=1

wijxj

+Di , (23)

Ai, Bi, Ci, Di for all i = 1, . . . , n are constant.
Now, let Xp =

(
x1p , x2p , . . . , xnp

)
∈ Rn be such that:

fi
(
xip
)
= xip, ∀i = 1, . . . , n, (24)

where fi (y) = Aiy
3 +Biy

2 + Ciy +Di , ∀i = 1, . . . , n, is given by (1).

Theorem 5. Let Xp = (x1p, . . . , xnp ) ∈ Rn be such that fi
(
xip
)
= xip , ∀i = 1, . . . , n. Xp is a

fixed point of F (x) if and only if

n∑
j=1

wijx
j
p = xip, ∀ i = 1, . . . , n. (25)

Proof. If F (Xp) = Xp, then from (23) and (24):

Ai

 n∑
j=1

wijx
j
p

3

+Bi

 n∑
j=1

wijx
j
p

2

+ Ci

 n∑
j=1

wijx
j
p

+Di = xip, ∀i = 1, . . . , n.

= fi
(
xip
)
= Ai

(
xip
)3

+Bi

(
xip
)2

+ Ci

(
xip
)
+Di.

Then,
∑n

j=1wijx
j
p = xip , ∀ i = 1, . . . , n. (Rubio et al., 2015). Conversely, if

∑n
j=1wijx

j
p =

xip , ∀ i = 1, . . . , n; then

Fi (Xp) = Ai

 n∑
j=1

wijx
j
p

3

+Bi

 n∑
j=1

wijx
j
p

2

+ Ci

 n∑
j=1

wijx
j
p

+Di

= Ai

(
xip
)3

+Bi

(
xip
)2

+ Ci

(
xip
)
+Di

= fi
(
xip
)
= xip , ∀ i = 1, . . . , n.

∴ F (Xp) = Xp.

From equation (25), it arise the following system:
w11x

1
p + w12x

2
p + · · ·+ w1nx

n
p = x1p

w21x
1
p + w22x

2
p + · · ·+ w2nx

n
p = x2p

...
wn1x

1
p + wn2x

2
p + · · ·+ wnnx

n
p = xnp

whose associated matrix is:

W =


w11 w12 . . . w1n

w21 w22 . . . w2n
...

...
...

...
wn1 wn2 . . . wnn

 (26)
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Furthermore, from (25):

wii = 1−
n∑

j=1
j ̸=i

wij

(
xjp
xip

)
, xip ̸= 0. (27)

4 Restoration of Images

In this section, we use the discrete cubic neural network constructed in the previous section. For
grayscale images, in the real case, the pixels take values in the interval [0; 1]. In this sense, each
component of the discrete neural network given by (22), will be built on the interval [−1, 1], with
x0 = −1, x2 = 1 and x1 ∈ ⟨−1; 1⟩, where x1 is an attractor fixed point, and x0, x2 are repellent
fixed points.

Following the methodology (Rubio & Hernándes, 2017a), it will give the rule to assign values
to the synaptic weights of the discrete cubic neural network, in order to guarantee the stability
of the network at the fixed point.

Let Xp ∈ Rn, Xp = (x1p, x
2
p, ..., x

n
p ) be such that

xip ∈ [−1; 1], xip ̸= 0, ∀i = 1, 2, ..., n (28)

M =

n∑
i=1

|xip|, h =
1

M
(29)

Then:

1. If − xjp
xip

> 0 then wij = −h, i ̸= j. (30)

2. If − xjp
xip

< 0 then wij = h, i ̸= j. (31)

Theorem 6. Let Xp = (x1p, x
2
p, ..., x

n
p ) ∈ Rn be such that 0.5 ≤ |xip| < 1,∀i = 1, 2, ..., n. Then

−1 ≤ 1− 1

|xip|
< 0 (32)

Proof. Since 0.5 ≤ |xip| < 1, then

1

2
≤ |xip| and |xip| < 1

1

|xip|
≤ 2 and 1 <

1

|xip|
(33)

By (33)

1 <
1

|xip|
≤ 2,

−1 ≤ 1− 1

|xip|
< 0.

Theorem 7. Let Xp = (x1p, x
2
p, ..., x

n
p ) ∈ Rn be such that 0.5 ≤ |xip| < 1,∀i = 1, 2, ..., n. Then

1− 1

|xip|
+

1

M
≤ wii < 1 (34)
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Proof. By (29) M =
∑n

i=1 |xip|.
From (30) and (31),

−xjp
xip

wij < 0.

Then

−
n∑

j=1,j ̸=i

xjp
xip

wij < 0,

0 <

n∑
j=1,j ̸=i

xjp
xip

wij ≤
n∑

j=1,j ̸=i

|wij |
|xjp|
|xip|

=

n∑
j=1,j ̸=i

|xjp|
M |xip|

=
1

M |xip|

n∑
j=1,j ̸=i

|xjp|

=
1

M |xip|
(M − |xip|) =

1

|xip|
− 1

M

Thus

0 <
n∑

j=1,j≠i

xjp
xip

wij ≤
1

|xip|
− 1

M
(35)

From (35),

0 > −
n∑

j=1,j ̸=i

xjp
xip

wij ≥
1

M
− 1

|xip|

1 > 1−
n∑

j=1,j ̸=i

xjp
xip

wij ≥ 1− 1

|xip|
+

1

M

1− 1

|xip|
+

1

M
≤ 1−

n∑
j=1,j ̸=i

xjp
xip

wij < 1.

By using (27),

1− 1

|xip|
+

1

M
≤ wii < 1.

Theorem 8. Let Xp = (x1p, x
2
p, ..., x

n
p ) ∈ Rn be such that 0.5 ≤ |xip| < 1,∀i = 1, 2, ..., n. Then

−1 ≤ 1− 1

|xip|
+

1

M
≤ wij < 1 (36)

Proof. From (32),

−1 ≤ 1− 1

|xip|
< 0,

Then

−1 ≤ 1− 1

|xip|
< 1− 1

|xip|
+

1

M

By (34)

−1 ≤ 1− 1

|xip|
+

1

M
≤ wii < 1.

249



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.4, N.3, 2019

Theorem 9. Let Xp = (x1p, x
2
p, ..., x

n
p ) ∈ Rn be such that 0.5 ≤ |xip| < 1, ∀i = 1, 2, ..., n,W =

(wij)n×n, where wij ,∀i, j = 1, ..., n, are given by (30) or (31). Then,

∥W∥∞ ≤ 1 +
n− 1

M
(37)

Proof. We have

n∑
j=1

|wij | = |wii|+
n∑

j=1,j ̸=i

|wij | = |wii|+
n∑

j=i,j ̸=i

1

M
, ∀i = 1, ..., n

= |wii|+
1

M
(n− 1) < 1 +

1

M
(n− 1), ∀i = 1, ..., n

Thus
n∑

j=1

|wij | < 1 +
1

M
(n− 1), ∀i = 1, ..., n,

and since

∥W∥∞ = max{
n∑

j=1

|wij |/i = 1, ..., n} < 1 +
1

M
(n− 1)

Therefore

∥W∥∞ < 1 +
n− 1

M
.

5 Stability

In this section the proof that establishes the stability of the discrete cubic neural network F (x)
is given.

By (23), the components of F (x) are given by:

Fi(x) = Ai

 n∑
j=1

wijxj

3

+Bi

 n∑
j=1

wijxj

2

+ Ci

 n∑
j=1

wijxj

+Di, ∀i = 1, ..., n.

Thus, the mapping F (x) = (F1(x), ..., Fn(x)) is differentiable of class C∞(Rn).

∂Fi(x)

∂xk
= 3Ai

 n∑
j=1

wijxj

2

wik + 2Bi

 n∑
j=1

wijxj

wik + Ciwik, ∀k = 1, ..., n.

∂Fi(x)

∂xk
=

3Ai

 n∑
j=1

wijxj

2

+ 2Bi

 n∑
j=1

wijxj

+ Ci

wik (38)

Therefore, from (38) the Jacobian matrix of F in x is

JF (x) =

3Ai

 n∑
j=1

wijxj

2

+ 2Bi

 n∑
j=1

wijxj

+ Ci

wik


n×n

(39)

Now, let Xp = (x1p, ..., x
n
p ) ∈ Rn a fixed point given apriori, with atractor fixed points xip, ∀i =

1, .., n, of the functions fi(x) given by (1). In the following result we show that the norm of the
Jacobian matrix at the point Xp is bounded by the norm of the synaptic weigth matrix W ; and
using the theorem (9), the stability of the discrete cubic neural network is assured.
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Theorem 10. Let Xp = (x1p, x
2
p, ..., x

n
p ) ∈ Rn be such that 0.5 ≤ |xip| < 1, fi

(
xip
)
= xip ∀ i =

1, ..., n, wij are given by (27), (30) or (31), ∀ i, j = 1, ..., n, ε ∈ R, 0 < ε < 1
2 . Then,

∥JF (Xp)∥∞ < ∥W∥∞ (40)

Proof. From (39),

n∑
k=1

∣∣∣∣∂Fi(Xp)

∂xk

∣∣∣∣ = n∑
k=1

∣∣∣∣∣∣
3Ai

 n∑
j=1

wijx
j
p

2

+ 2Bi

 n∑
j=1

wijx
j
p

+ Ci

wik

∣∣∣∣∣∣
=

n∑
k=1

∣∣∣∣∣∣
3Ai

 n∑
j=1

wijx
j
p

2

+ 2Bi

 n∑
j=1

wijx
j
p

+ Ci

∣∣∣∣∣∣ |wik|

n∑
k=1

∣∣3Ai(x
i
p)

2 + 2Bix
i
p + Ci

∣∣ |wik|

=
n∑

k=1

∣∣f ′
i(x

i
p)
∣∣ |wik|

<
n∑

k=1

|wij |

Therefore, ∥JF (Xp)∥∞ ≤ ∥W∥∞.

Now, we consider a grayscale image of size n × n pixels, where each pixel is in the interval of
real numbers [0; 1]. The image will be represented matrix by I = (ajk) of dimension n× n. The
following are the steps to follow for the application of network to the restoration of images.

1. Transform I into a vector XI ∈ RL, L = n× n, through:

XI(m) = I(j, k) (41)

where m = n(j − 1) + k.

2. Using the function:

f(x) =
x

2
+

1

2
, (42)

for each component of XI , we transform XI into Xp, where:

xjp ∈ [0.5; 1], ∀j = 1, ..., L. (43)

it is necessary for the utilization of the theorems (6-10).

3. Now, using Xp as a fixed point given apriori for the construction of the recurrent cubic
discrete neural network (23).

4. Using the algorithm of fixed point, with the starting point X0, it gets an approximation
Xap of Xp.

5. Using the inverse function of (42):

f−1(x) = 2x− 1, (44)

for each component of Xap and following the inverse process of (41), the restored image is
obtained Iap.
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6 Computer Simulation

In order to compare the performance of our Recurrent Cubic Discrete Neural Network, in restor-
ing grayscale images, the Wiener restoration method was used. The experiment consisted of
restoring a perturbed image, obtained by the use of additive Gaussian noise of zero mean and
variance σ , where 0.0001 ≤ σ ≤ 0.2; applied to a noise free image I. The Euclidean norm was
used to estimate the error in the approximation; which is given by:

Error = ∥Xp −X∥, Xp, X ∈ RL, L = n× n.

where:

• Xp is the noise-free image.

• X is the perturbed image or restored image.

A noise-free image I of dimension 140 × 140 pixels in grayscale was chosen, and using the
methodology of the previous section, we obtain Xp ∈ RL, L = 19600.

The parameters used in the cubic recurrent discrete neural network are: x0 = −1, x2 =
1, tol = 0.1, ε = 0.1; where tol is the parameter used in the fixed point algorithm.

For each value of the variance, we observe that the best image restored is that obtained
by the Recurrent Cubic Discrete Neural Network, which is closer to the noise-free image Xp;
compared to the restored image obtained by the Wiener method Xw.

The next figures show some results.

(a) Noise-free image (b) Noisy image per-
turbed by Gaussian
additive noise of zero
mean and variance
σ = 0.01.

(c) Restore image with
Wiener method.

(d) Restored image using
our Recurrent Cubic Dis-
crete Neural Network.

Figure 2: Results by using Recurrent Cubic Discrete Neural Network
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(a) Noise-free image (b) Noisy image per-
turbed by Gaussian
additive noise of zero
mean and variance
σ = 0.1.

(c) Restore image with
Wiener method.

(d) Restored image using
our Recurrent Cubic Dis-
crete Neural Network.

Figure 3: Results by using Recurrent Cubic Discrete Neural Network

The next table shows other results obtained by applying the Wiener method and the Re-
current Cubic Discrete Neural Network. It is observed that the error obtained using the neural
network is close to zero, compared to the error obtained by the Wiener method.

Table 1: Numerical results of the restored images using the Wiener method and our Recurrent
Cubic Discrete Neural Network

Variance Error between noise-free Error using Error using
σ image Xp and perturbed Wiener’s method our Neural Network

image Xd ∥Xp −Xw∥ ∥Xp −Xr∥
∥Xp −Xd∥

0.0001 5.4553 6.6518 0.0038

0.001 5.8912 5.6233 0.0046

0.01 8.6395 7.1026 0.0141

0.05 14.9775 15.2618 0.0840

0.1 19.1541 19.8580 0.0016

0.2 23.8229 23.6962 0.0033

7 Conclusion

In this paper it is propose a new neural network for restoration of grayscale images, based
on cubic polynomial neural networks. The algorithm developed improves the suppression of
deformations in the image, conserving the geometric characteristics of the image.

A criterion is given for the assignment of values to the synaptic weights of the neural network;
which helps to prove the stability of the neural network from another point of view, without
using the Hopfield energy function.
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